home *** CD-ROM | disk | FTP | other *** search
/ Interactive Algebra & Tri…f Guided Study Companion / Interactive Algebra and Trigonometry - A Self-Guided Study Companion.iso / tutor / chap_8 / 8-1-1.tut next >
Unknown  |  1996-10-10  |  5.1 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Eclipse Tutorial (other/eclipseTutorial) ext Unsupported
1% dexvert JuggleKrazy Tutorial (other/juggleKrazyTutorial) ext Unsupported
100% file data default
100% gt2 Kopftext: 'TUTOR 06' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | be 13 00 00 9f 00 00 00 |TUTOR 06|........|
|00000010| 43 68 61 70 74 65 72 20 | 38 20 20 41 64 64 69 74 |Chapter |8 Addit|
|00000020| 69 6f 6e 61 6c 20 54 6f | 70 69 63 73 20 69 6e 20 |ional To|pics in |
|00000030| 54 72 69 67 6f 6e 6f 6d | 65 74 72 79 0d 0b 00 16 |Trigonom|etry....|
|00000040| 61 38 2d 69 6e 64 65 78 | 16 14 63 68 61 70 39 2e |a8-index|..chap9.|
|00000050| 68 69 14 30 14 31 14 37 | 38 14 31 38 14 0d 0a 00 |hi.0.1.7|8.18....|
|00000060| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000070| 20 20 20 20 20 10 61 38 | 2d 70 72 65 0e 70 72 65 | .a8|-pre.pre|
|00000080| 69 6e 74 72 6f 2d 38 0e | 43 68 61 70 74 65 72 20 |intro-8.|Chapter |
|00000090| 57 61 72 6d 20 55 70 0f | 0d 0a 00 0d 0b 00 20 20 |Warm Up.|...... |
|000000a0| 20 20 20 0e 73 38 2d 31 | 0e 53 65 63 74 69 6f 6e | .s8-1|.Section|
|000000b0| 20 38 2e 31 0f 20 20 4c | 61 77 20 6f 66 20 53 69 | 8.1. L|aw of Si|
|000000c0| 6e 65 73 0d 0a 00 0d 0b | 00 20 20 20 20 20 10 61 |nes.....|. .a|
|000000d0| 38 2d 32 2d 31 0e 73 38 | 2d 32 0e 53 65 63 74 69 |8-2-1.s8|-2.Secti|
|000000e0| 6f 6e 20 38 2e 32 0f 20 | 20 4c 61 77 20 6f 66 20 |on 8.2. | Law of |
|000000f0| 43 6f 73 69 6e 65 73 0d | 0a 00 0d 0b 00 20 20 20 |Cosines.|..... |
|00000100| 20 20 10 61 38 2d 33 2d | 31 0e 73 38 2d 33 0e 53 | .a8-3-|1.s8-3.S|
|00000110| 65 63 74 69 6f 6e 20 38 | 2e 33 0f 20 20 56 65 63 |ection 8|.3. Vec|
|00000120| 74 6f 72 73 20 69 6e 20 | 74 68 65 20 50 6c 61 6e |tors in |the Plan|
|00000130| 65 0d 0a 00 0d 0b 00 20 | 20 20 20 20 10 61 38 2d |e...... | .a8-|
|00000140| 34 2d 31 0e 73 38 2d 34 | 0e 53 65 63 74 69 6f 6e |4-1.s8-4|.Section|
|00000150| 20 38 2e 34 0f 20 20 56 | 65 63 74 6f 72 73 20 61 | 8.4. V|ectors a|
|00000160| 6e 64 20 44 6f 74 20 50 | 72 6f 64 75 63 74 73 0d |nd Dot P|roducts.|
|00000170| 0a 00 0d 0b 00 20 20 20 | 20 20 10 61 38 2d 35 2d |..... | .a8-5-|
|00000180| 31 0e 73 38 2d 35 0e 53 | 65 63 74 69 6f 6e 20 38 |1.s8-5.S|ection 8|
|00000190| 2e 35 0f 20 20 44 65 4d | 6f 69 76 72 65 27 73 20 |.5. DeM|oivre's |
|000001a0| 54 68 65 6f 72 65 6d 0d | 0a 00 0d 0b 00 20 20 20 |Theorem.|..... |
|000001b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 10 | | .|
|000001c0| 61 38 2d 72 2d 31 0e 78 | 38 2d 72 0e 52 65 76 69 |a8-r-1.x|8-r.Revi|
|000001d0| 65 77 20 45 78 65 72 63 | 69 73 65 73 20 66 6f 72 |ew Exerc|ises for|
|000001e0| 20 43 68 61 70 74 65 72 | 20 38 0f 0d 0a 00 0d 0b | Chapter| 8......|
|000001f0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000200| 20 20 20 10 61 38 2d 70 | 6f 73 74 0e 70 6f 73 74 | .a8-p|ost.post|
|00000210| 69 6e 74 72 6f 2d 38 0e | 43 68 61 70 74 65 72 20 |intro-8.|Chapter |
|00000220| 50 6f 73 74 2d 54 65 73 | 74 0f 0d 0a 00 0d 0b 00 |Post-Tes|t.......|
|00000230| 53 65 63 74 69 6f 6e 20 | 38 2e 31 20 20 4c 61 77 |Section |8.1 Law|
|00000240| 20 6f 66 20 53 69 6e 65 | 73 0d 0a 00 46 6f 72 20 | of Sine|s...For |
|00000250| 6d 6f 72 65 20 70 72 61 | 63 74 69 63 65 3a 0d 0a |more pra|ctice:..|
|00000260| 00 0d 0b 00 20 20 20 20 | 20 10 61 38 2d 31 2d 33 |.... | .a8-1-3|
|00000270| 0e 78 38 2d 31 0e 54 75 | 74 6f 72 69 61 6c 20 45 |.x8-1.Tu|torial E|
|00000280| 78 65 72 63 69 73 65 73 | 0f 0d 0a 00 20 20 20 20 |xercises|.... |
|00000290| 20 10 61 38 2d 31 2d 32 | 0e 65 38 2d 31 0e 47 75 | .a8-1-2|.e8-1.Gu|
|000002a0| 69 64 65 64 20 45 78 61 | 6d 70 6c 65 73 0f 0d 0a |ided Exa|mples...|
|000002b0| 00 0d 0a 00 54 6f 70 69 | 63 73 20 66 6f 72 20 65 |....Topi|cs for e|
|000002c0| 78 70 6c 6f 72 61 74 69 | 6f 6e 3a 0d 0a 00 0d 0b |xplorati|on:.....|
|000002d0| 00 20 20 20 20 20 0e 73 | 38 2d 31 2d 31 0e 53 74 |. .s|8-1-1.St|
|000002e0| 61 6e 64 61 72 64 20 4e | 6f 74 61 74 69 6f 6e 20 |andard N|otation |
|000002f0| 66 6f 72 20 53 6f 6c 76 | 69 6e 67 20 4f 62 6c 69 |for Solv|ing Obli|
|00000300| 71 75 65 20 54 72 69 61 | 6e 67 6c 65 73 0f 0d 0a |que Tria|ngles...|
|00000310| 00 20 20 20 20 20 0e 73 | 38 2d 31 2d 32 0e 4c 61 |. .s|8-1-2.La|
|00000320| 77 20 6f 66 20 53 69 6e | 65 73 0f 0d 0a 00 20 20 |w of Sin|es.... |
|00000330| 20 20 20 0e 73 38 2d 31 | 2d 33 0e 54 68 65 20 41 | .s8-1|-3.The A|
|00000340| 6d 62 69 67 75 6f 75 73 | 20 43 61 73 65 20 28 53 |mbiguous| Case (S|
|00000350| 53 41 29 0f 0d 0a 00 20 | 20 20 20 20 0e 73 38 2d |SA).... | .s8-|
|00000360| 31 2d 34 0e 41 72 65 61 | 20 6f 66 20 61 6e 20 4f |1-4.Area| of an O|
|00000370| 62 6c 69 71 75 65 20 54 | 72 69 61 6e 67 6c 65 0f |blique T|riangle.|
|00000380| 0d 0a 00 53 65 63 74 69 | 6f 6e 20 38 2e 31 20 20 |...Secti|on 8.1 |
|00000390| 4c 61 77 20 6f 66 20 53 | 69 6e 65 73 0d 0b 00 54 |Law of S|ines...T|
|000003a0| 72 69 61 6e 67 6c 65 73 | 20 74 68 61 74 20 68 61 |riangles| that ha|
|000003b0| 76 65 20 6e 6f 20 72 69 | 67 68 74 20 61 6e 67 6c |ve no ri|ght angl|
|000003c0| 65 73 20 61 72 65 20 63 | 61 6c 6c 65 64 20 12 31 |es are c|alled .1|
|000003d0| 6f 62 6c 69 71 75 65 12 | 30 2e 20 20 41 73 20 73 |oblique.|0. As s|
|000003e0| 74 61 6e 64 61 72 64 20 | 6e 6f 74 61 74 69 6f 6e |tandard |notation|
|000003f0| 2c 20 0d 0a 00 77 65 20 | 6c 61 62 65 6c 20 74 68 |, ...we |label th|
|00000400| 65 20 76 65 72 74 69 63 | 65 73 20 6f 66 20 61 20 |e vertic|es of a |
|00000410| 74 72 69 61 6e 67 6c 65 | 20 61 73 20 11 33 41 2c |triangle| as .3A,|
|00000420| 20 42 2c 20 11 31 61 6e | 64 20 11 33 43 11 31 2c | B, .1an|d .3C.1,|
|00000430| 20 61 6e 64 20 74 68 65 | 69 72 20 6f 70 70 6f 73 | and the|ir oppos|
|00000440| 69 74 65 20 73 69 64 65 | 73 20 0d 0a 00 61 73 20 |ite side|s ...as |
|00000450| 11 33 61 2c 20 62 2c 20 | 11 31 61 6e 64 20 11 33 |.3a, b, |.1and .3|
|00000460| 63 11 31 2e 0d 0a 00 0d | 0a 00 54 6f 20 73 6f 6c |c.1.....|..To sol|
|00000470| 76 65 20 61 6e 20 6f 62 | 6c 69 71 75 65 20 74 72 |ve an ob|lique tr|
|00000480| 69 61 6e 67 6c 65 2c 20 | 77 65 20 6e 65 65 64 20 |iangle, |we need |
|00000490| 74 6f 20 6b 6e 6f 77 20 | 74 68 65 20 6d 65 61 73 |to know |the meas|
|000004a0| 75 72 65 20 6f 66 20 61 | 74 20 6c 65 61 73 74 20 |ure of a|t least |
|000004b0| 6f 6e 65 20 0d 0a 00 73 | 69 64 65 20 61 6e 64 20 |one ...s|ide and |
|000004c0| 61 6e 79 20 74 77 6f 20 | 6f 74 68 65 72 20 70 61 |any two |other pa|
|000004d0| 72 74 73 20 6f 66 20 74 | 68 65 20 74 72 69 61 6e |rts of t|he trian|
|000004e0| 67 6c 65 2e 20 20 54 68 | 69 73 20 6c 65 61 76 65 |gle. Th|is leave|
|000004f0| 73 20 75 73 20 77 69 74 | 68 20 66 6f 75 72 20 0d |s us wit|h four .|
|00000500| 0a 00 70 6f 73 73 69 62 | 6c 65 20 74 79 70 65 73 |..possib|le types|
|00000510| 20 6f 66 20 70 72 6f 62 | 6c 65 6d 73 2e 0d 0a 00 | of prob|lems....|
|00000520| 0d 0b 00 20 31 2e 20 54 | 77 6f 20 61 6e 67 6c 65 |... 1. T|wo angle|
|00000530| 73 20 61 6e 64 20 61 6e | 79 20 73 69 64 65 20 28 |s and an|y side (|
|00000540| 12 31 41 41 53 12 30 20 | 6f 72 20 12 31 41 53 41 |.1AAS.0 |or .1ASA|
|00000550| 12 30 29 0d 0a 00 20 32 | 2e 20 54 77 6f 20 73 69 |.0)... 2|. Two si|
|00000560| 64 65 73 20 61 6e 64 20 | 61 6e 20 61 6e 67 6c 65 |des and |an angle|
|00000570| 20 6f 70 70 6f 73 69 74 | 65 20 6f 6e 65 20 6f 66 | opposit|e one of|
|00000580| 20 74 68 65 6d 20 28 12 | 31 53 53 41 12 30 29 0d | them (.|1SSA.0).|
|00000590| 0a 00 20 33 2e 20 54 68 | 72 65 65 20 73 69 64 65 |.. 3. Th|ree side|
|000005a0| 73 20 28 12 31 53 53 53 | 12 30 29 0d 0a 00 20 34 |s (.1SSS|.0)... 4|
|000005b0| 2e 20 54 77 6f 20 73 69 | 64 65 73 20 61 6e 64 20 |. Two si|des and |
|000005c0| 74 68 65 69 72 20 69 6e | 63 6c 75 64 65 64 20 61 |their in|cluded a|
|000005d0| 6e 67 6c 65 20 28 12 31 | 53 41 53 12 30 29 0d 0a |ngle (.1|SAS.0)..|
|000005e0| 00 0d 0a 00 54 68 65 20 | 66 69 72 73 74 20 74 77 |....The |first tw|
|000005f0| 6f 20 63 61 73 65 73 20 | 63 61 6e 20 62 65 20 73 |o cases |can be s|
|00000600| 6f 6c 76 65 64 20 75 73 | 69 6e 67 20 74 68 65 20 |olved us|ing the |
|00000610| 4c 61 77 20 6f 66 20 53 | 69 6e 65 73 2c 20 77 68 |Law of S|ines, wh|
|00000620| 69 6c 65 20 74 68 65 20 | 73 65 63 6f 6e 64 20 0d |ile the |second .|
|00000630| 0a 00 74 77 6f 20 63 61 | 73 65 73 20 72 65 71 75 |..two ca|ses requ|
|00000640| 69 72 65 20 74 68 65 20 | 4c 61 77 20 6f 66 20 43 |ire the |Law of C|
|00000650| 6f 73 69 6e 65 73 20 28 | 74 6f 20 62 65 20 64 69 |osines (|to be di|
|00000660| 73 63 75 73 73 65 64 20 | 69 6e 20 53 65 63 74 69 |scussed |in Secti|
|00000670| 6f 6e 20 38 2e 32 29 2e | 0d 0a 00 53 65 63 74 69 |on 8.2).|...Secti|
|00000680| 6f 6e 20 38 2e 31 20 20 | 4c 61 77 20 6f 66 20 53 |on 8.1 |Law of S|
|00000690| 69 6e 65 73 0d 0b 00 54 | 68 65 20 12 31 4c 61 77 |ines...T|he .1Law|
|000006a0| 20 6f 66 20 53 69 6e 65 | 73 12 30 20 73 74 61 74 | of Sine|s.0 stat|
|000006b0| 65 73 20 74 68 61 74 20 | 69 66 20 11 33 41 42 43 |es that |if .3ABC|
|000006c0| 20 11 31 69 73 20 61 20 | 74 72 69 61 6e 67 6c 65 | .1is a |triangle|
|000006d0| 20 77 69 74 68 20 73 69 | 64 65 73 20 11 33 61 2c | with si|des .3a,|
|000006e0| 20 62 2c 20 11 31 61 6e | 64 20 0d 0a 00 11 33 63 | b, .1an|d ....3c|
|000006f0| 11 31 2c 20 74 68 65 6e | 20 0d 0a 00 20 20 20 20 |.1, then| ... |
|00000700| 20 20 20 11 33 61 20 20 | 20 20 20 20 20 62 20 20 | .3a | b |
|00000710| 20 20 20 20 20 63 20 20 | 20 20 20 20 20 20 20 20 | c | |
|00000720| 11 31 73 69 6e 20 11 33 | 41 20 20 20 11 31 73 69 |.1sin .3|A .1si|
|00000730| 6e 20 11 33 42 20 20 20 | 11 31 73 69 6e 20 11 33 |n .3B |.1sin .3|
|00000740| 43 0d 0b 00 20 20 20 20 | 20 11 34 32 32 32 32 32 |C... | .422222|
|00000750| 20 11 31 3d 20 11 34 32 | 32 32 32 32 20 11 31 3d | .1= .42|2222 .1=|
|00000760| 20 11 34 32 32 32 32 32 | 20 20 20 11 31 6f 72 20 | .422222| .1or |
|00000770| 20 20 11 34 32 32 32 32 | 32 20 11 31 3d 20 11 34 | .42222|2 .1= .4|
|00000780| 32 32 32 32 32 20 11 31 | 3d 20 11 34 32 32 32 32 |22222 .1|= .42222|
|00000790| 32 11 31 2e 0d 0b 00 20 | 20 20 20 20 73 69 6e 20 |2.1.... | sin |
|000007a0| 11 33 41 20 20 20 11 31 | 73 69 6e 20 11 33 42 20 |.3A .1|sin .3B |
|000007b0| 20 20 11 31 73 69 6e 20 | 11 33 43 20 20 20 20 20 | .1sin |.3C |
|000007c0| 20 20 20 20 20 61 20 20 | 20 20 20 20 20 62 20 20 | a | b |
|000007d0| 20 20 20 20 20 63 0d 0a | 00 0d 0a 00 11 31 49 66 | c..|.....1If|
|000007e0| 20 79 6f 75 20 75 73 65 | 20 61 20 63 61 6c 63 75 | you use| a calcu|
|000007f0| 6c 61 74 6f 72 20 77 69 | 74 68 20 74 68 65 20 4c |lator wi|th the L|
|00000800| 61 77 20 6f 66 20 53 69 | 6e 65 73 2c 20 73 74 6f |aw of Si|nes, sto|
|00000810| 72 65 20 61 6c 6c 20 69 | 6e 74 65 72 6d 65 64 69 |re all i|ntermedi|
|00000820| 61 74 65 20 72 65 73 75 | 6c 74 73 2e 0d 0a 00 59 |ate resu|lts....Y|
|00000830| 6f 75 20 63 61 6e 20 6d | 69 6e 69 6d 69 7a 65 20 |ou can m|inimize |
|00000840| 72 6f 75 6e 64 2d 6f 66 | 66 20 65 72 72 6f 72 20 |round-of|f error |
|00000850| 62 79 20 6e 6f 74 20 72 | 6f 75 6e 64 69 6e 67 20 |by not r|ounding |
|00000860| 75 6e 74 69 6c 20 74 68 | 65 20 66 69 6e 61 6c 20 |until th|e final |
|00000870| 72 65 73 75 6c 74 2e 0d | 0a 00 53 65 63 74 69 6f |result..|..Sectio|
|00000880| 6e 20 38 2e 31 20 20 4c | 61 77 20 6f 66 20 53 69 |n 8.1 L|aw of Si|
|00000890| 6e 65 73 0d 0b 00 54 68 | 65 20 63 61 73 65 20 77 |nes...Th|e case w|
|000008a0| 68 65 72 65 20 77 65 20 | 68 61 76 65 20 61 6e 20 |here we |have an |
|000008b0| 6f 62 6c 69 71 75 65 20 | 74 72 69 61 6e 67 6c 65 |oblique |triangle|
|000008c0| 20 61 6e 64 20 74 77 6f | 20 73 69 64 65 73 20 61 | and two| sides a|
|000008d0| 6e 64 20 61 6e 20 6f 70 | 70 6f 73 69 74 65 20 0d |nd an op|posite .|
|000008e0| 0a 00 61 6e 67 6c 65 20 | 61 72 65 20 6b 6e 6f 77 |..angle |are know|
|000008f0| 6e 20 69 73 20 63 61 6c | 6c 65 64 20 74 68 65 20 |n is cal|led the |
|00000900| 12 31 61 6d 62 69 67 75 | 6f 75 73 20 63 61 73 65 |.1ambigu|ous case|
|00000910| 20 28 53 53 41 29 12 30 | 2e 20 20 54 68 69 73 20 | (SSA).0|. This |
|00000920| 69 73 20 62 65 63 61 75 | 73 65 20 74 68 65 72 65 |is becau|se there|
|00000930| 20 0d 0a 00 61 72 65 20 | 73 65 76 65 72 61 6c 20 | ...are |several |
|00000940| 66 6f 72 6d 73 20 6f 66 | 20 74 68 65 20 73 6f 6c |forms of| the sol|
|00000950| 75 74 69 6f 6e 73 20 61 | 73 20 73 68 6f 77 6e 20 |utions a|s shown |
|00000960| 69 6e 20 74 68 65 20 74 | 61 62 6c 65 20 62 65 6c |in the t|able bel|
|00000970| 6f 77 2e 20 20 28 41 73 | 73 75 6d 65 20 11 33 61 |ow. (As|sume .3a|
|00000980| 2c 20 62 2c 0d 0a 00 11 | 31 61 6e 64 20 11 33 41 |, b,....|1and .3A|
|00000990| 20 11 31 61 72 65 20 67 | 69 76 65 6e 2c 20 61 6e | .1are g|iven, an|
|000009a0| 64 20 11 33 68 20 3d 20 | 62 20 11 31 73 69 6e 20 |d .3h = |b .1sin |
|000009b0| 11 33 41 11 31 2e 29 0d | 0a 00 20 20 20 20 20 20 |.3A.1.).|.. |
|000009c0| 20 20 20 20 11 34 5b 32 | 32 32 32 32 32 32 32 32 | .4[2|22222222|
|000009d0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000009e0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000009f0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00000a00| 32 32 32 32 32 32 32 32 | 5d 0d 0b 00 20 20 20 20 |22222222|]... |
|00000a10| 20 20 20 20 20 20 21 20 | 20 20 20 20 20 20 20 20 | ! | |
|00000a20| 20 20 20 20 20 20 20 11 | 33 41 20 11 31 69 73 20 | .|3A .1is |
|00000a30| 41 63 75 74 65 20 20 20 | 20 20 20 20 20 20 20 20 |Acute | |
|00000a40| 20 20 20 20 20 20 11 34 | 21 20 20 20 20 20 11 33 | .4|! .3|
|00000a50| 41 20 11 31 69 73 20 4f | 62 74 75 73 65 20 20 20 |A .1is O|btuse |
|00000a60| 20 20 11 34 21 0d 0b 00 | 20 20 20 20 20 20 20 20 | .4!...| |
|00000a70| 20 20 5b 32 32 32 32 32 | 32 32 32 32 32 32 32 32 | [22222|22222222|
|00000a80| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00000a90| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00000aa0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00000ab0| 32 32 32 32 5d 0d 0b 00 | 20 20 20 20 20 20 20 20 |2222]...| |
|00000ac0| 20 20 21 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | ! | |
|00000ad0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ae0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 21 20 | | ! |
|00000af0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b00| 20 20 20 20 21 0d 0b 00 | 20 20 20 11 31 53 6b 65 | !...| .1Ske|
|00000b10| 74 63 68 20 11 34 21 20 | 20 20 20 20 20 20 20 20 |tch .4! | |
|00000b20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b40| 20 11 31 14 74 2d 39 2d | 31 2d 31 2e 61 74 14 31 | .1.t-9-|1-1.at.1|
|00000b50| 32 14 31 30 14 34 30 14 | 36 14 20 11 34 21 20 20 |2.10.40.|6. .4! |
|00000b60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b70| 20 20 20 21 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | !... | |
|00000b80| 20 21 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | ! | |
|00000b90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ba0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 21 20 20 | | ! |
|00000bb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000bc0| 20 20 20 21 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | !... | |
|00000bd0| 20 21 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | ! | |
|00000be0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000bf0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 21 20 20 | | ! |
|00000c00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c10| 20 20 20 21 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | !... | |
|00000c20| 20 21 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | ! | |
|00000c30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 21 20 20 | | ! |
|00000c50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c60| 20 20 20 21 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | !... | |
|00000c70| 20 21 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | ! | |
|00000c80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 21 20 20 | | ! |
|00000ca0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000cb0| 20 20 20 21 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | !... | |
|00000cc0| 20 21 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | ! | |
|00000cd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ce0| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 31 14 74 | | .1.t|
|00000cf0| 2d 39 2d 31 2d 32 2e 61 | 74 14 35 36 14 31 30 14 |-9-1-2.a|t.56.10.|
|00000d00| 32 30 14 36 14 20 11 34 | 21 20 20 20 20 20 20 20 |20.6. .4|! |
|00000d10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 21 0d | | !.|
|00000d20| 0b 00 20 20 20 20 20 20 | 20 20 20 20 21 20 20 20 |.. | ! |
|00000d30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d50| 20 20 20 20 20 20 20 20 | 21 20 20 20 20 20 20 20 | |! |
|00000d60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 21 0d | | !.|
|00000d70| 0b 00 20 20 20 20 20 20 | 20 20 20 20 21 20 20 20 |.. | ! |
|00000d80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000da0| 20 20 20 20 20 20 20 20 | 21 20 20 20 20 20 20 20 | |! |
|00000db0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 21 0d | | !.|
|00000dc0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 21 20 20 20 |.. | ! |
|00000dd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000de0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000df0| 20 20 20 20 20 20 20 20 | 21 20 20 20 20 20 20 20 | |! |
|00000e00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 21 0d | | !.|
|00000e10| 0b 00 11 31 4e 65 63 65 | 73 73 61 72 79 20 11 34 |...1Nece|ssary .4|
|00000e20| 21 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |! | |
|00000e30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e40| 20 20 20 20 20 20 20 20 | 20 20 20 20 21 20 20 20 | | ! |
|00000e50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e60| 20 20 21 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 | !... | |
|00000e70| 21 20 20 20 11 33 61 20 | 3c 20 68 20 20 20 20 20 |! .3a |< h |
|00000e80| 61 20 3d 20 68 20 20 20 | 20 20 61 20 3e 20 62 20 |a = h | a > b |
|00000e90| 20 20 68 20 3c 20 61 20 | 3c 20 62 20 20 20 11 34 | h < a |< b .4|
|00000ea0| 21 20 20 20 11 33 61 20 | 11 34 3c 20 11 33 62 20 |! .3a |.4< .3b |
|00000eb0| 20 20 20 20 61 20 3e 20 | 62 20 20 20 11 34 21 0d | a > |b .4!.|
|00000ec0| 0b 00 11 31 43 6f 6e 64 | 69 74 69 6f 6e 20 11 34 |...1Cond|ition .4|
|00000ed0| 21 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |! | |
|00000ee0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ef0| 20 20 20 20 20 20 20 20 | 20 20 20 20 21 20 20 20 | | ! |
|00000f00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000f10| 20 20 21 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 | !... | |
|00000f20| 21 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |! | |
|00000f30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000f40| 20 20 20 20 20 20 20 20 | 20 20 20 20 21 20 20 20 | | ! |
|00000f50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000f60| 20 20 21 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 | !... | |
|00000f70| 21 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |! | |
|00000f80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000f90| 20 20 20 20 20 20 20 20 | 20 20 20 20 21 20 20 20 | | ! |
|00000fa0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000fb0| 20 20 21 0d 0b 00 11 31 | 54 72 69 61 6e 67 6c 65 | !....1|Triangle|
|00000fc0| 73 20 11 34 21 20 20 20 | 20 20 20 20 20 20 20 20 |s .4! | |
|00000fd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000fe0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ff0| 21 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |! | |
|00001000| 20 20 20 20 20 20 21 0d | 0b 00 20 20 20 20 20 20 | !.|.. |
|00001010| 20 20 20 20 21 20 20 20 | 11 31 4e 6f 6e 65 20 20 | ! |.1None |
|00001020| 20 20 20 20 20 4f 6e 65 | 20 20 20 20 20 20 20 4f | One| O|
|00001030| 6e 65 20 20 20 20 20 20 | 20 54 77 6f 20 20 20 20 |ne | Two |
|00001040| 20 20 11 34 21 20 20 20 | 11 31 4e 6f 6e 65 20 20 | .4! |.1None |
|00001050| 20 20 20 20 20 4f 6e 65 | 20 20 20 20 11 34 21 0d | One| .4!.|
|00001060| 0b 00 20 11 31 50 6f 73 | 73 69 62 6c 65 20 11 34 |.. .1Pos|sible .4|
|00001070| 21 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |! | |
|00001080| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001090| 20 20 20 20 20 20 20 20 | 20 20 20 20 21 20 20 20 | | ! |
|000010a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000010b0| 20 20 21 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 | !... | |
|000010c0| 6c 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |l2222222|22222222|
|000010d0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000010e0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000010f0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00001100| 32 32 6a 0d 0a 00 53 65 | 63 74 69 6f 6e 20 38 2e |22j...Se|ction 8.|
|00001110| 31 20 20 4c 61 77 20 6f | 66 20 53 69 6e 65 73 0d |1 Law o|f Sines.|
|00001120| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001130| 20 20 20 20 20 20 20 20 | 20 20 20 12 31 41 72 65 | | .1Are|
|00001140| 61 20 6f 66 20 61 6e 20 | 4f 62 6c 69 71 75 65 20 |a of an |Oblique |
|00001150| 54 72 69 61 6e 67 6c 65 | 12 30 0d 0a 00 0d 0b 00 |Triangle|.0......|
|00001160| 54 68 65 20 61 72 65 61 | 20 6f 66 20 61 6e 79 20 |The area| of any |
|00001170| 74 72 69 61 6e 67 6c 65 | 20 69 73 20 67 69 76 65 |triangle| is give|
|00001180| 6e 20 62 79 20 6f 6e 65 | 2d 68 61 6c 66 20 74 68 |n by one|-half th|
|00001190| 65 20 70 72 6f 64 75 63 | 74 20 6f 66 20 74 68 65 |e produc|t of the|
|000011a0| 20 6c 65 6e 67 74 68 73 | 20 6f 66 20 0d 0a 00 74 | lengths| of ...t|
|000011b0| 77 6f 20 73 69 64 65 73 | 20 74 69 6d 65 73 20 74 |wo sides| times t|
|000011c0| 68 65 20 73 69 6e 65 20 | 6f 66 20 74 68 65 69 72 |he sine |of their|
|000011d0| 20 69 6e 63 6c 75 64 65 | 64 20 61 6e 67 6c 65 2e | include|d angle.|
|000011e0| 20 20 54 68 61 74 20 69 | 73 2c 0d 0a 00 20 20 20 | That i|s,... |
|000011f0| 20 20 20 20 20 20 20 20 | 20 31 20 20 20 20 20 20 | | 1 |
|00001200| 20 20 20 20 20 31 20 20 | 20 20 20 20 20 20 20 20 | 1 | |
|00001210| 20 31 0d 0b 00 20 20 20 | 20 20 41 72 65 61 20 3d | 1... | Area =|
|00001220| 20 11 34 32 11 33 62 63 | 20 11 31 73 69 6e 20 11 | .42.3bc| .1sin .|
|00001230| 33 41 20 11 31 3d 20 11 | 34 32 11 33 61 62 20 11 |3A .1= .|42.3ab .|
|00001240| 31 73 69 6e 20 11 33 43 | 20 11 31 3d 20 11 34 32 |1sin .3C| .1= .42|
|00001250| 11 33 61 63 20 11 31 73 | 69 6e 20 11 33 42 11 31 |.3ac .1s|in .3B.1|
|00001260| 2e 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|00001270| 32 20 20 20 20 20 20 20 | 20 20 20 20 32 20 20 20 |2 | 2 |
|00001280| 20 20 20 20 20 20 20 20 | 32 0d 0a 00 0d 0a 00 4e | |2......N|
|00001290| 6f 74 65 20 74 68 61 74 | 20 74 68 65 20 66 6f 72 |ote that| the for|
|000012a0| 6d 75 6c 61 20 61 62 6f | 76 65 20 68 6f 6c 64 73 |mula abo|ve holds|
|000012b0| 20 69 6e 20 74 68 65 20 | 73 70 65 63 69 61 6c 20 | in the |special |
|000012c0| 63 61 73 65 20 6f 66 20 | 61 20 72 69 67 68 74 20 |case of |a right |
|000012d0| 74 72 69 61 6e 67 6c 65 | 20 28 69 66 20 0d 0a 00 |triangle| (if ...|
|000012e0| 20 20 20 20 20 20 11 34 | 6f 20 20 20 20 20 20 20 | .4|o |
|000012f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001300| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001310| 20 20 11 31 31 20 20 20 | 20 20 20 20 20 20 11 34 | .11 | .4|
|00001320| 6f 20 20 20 11 31 31 0d | 0b 00 74 68 65 20 39 30 |o .11.|..the 90|
|00001330| 20 20 61 6e 67 6c 65 20 | 69 73 20 74 68 65 20 69 | angle |is the i|
|00001340| 6e 63 6c 75 64 65 64 20 | 61 6e 67 6c 65 20 74 68 |ncluded |angle th|
|00001350| 65 6e 20 41 72 65 61 20 | 3d 20 11 34 32 11 33 62 |en Area |= .42.3b|
|00001360| 63 20 11 31 73 69 6e 20 | 39 30 20 20 3d 20 11 34 |c .1sin |90 = .4|
|00001370| 32 11 33 62 63 11 31 29 | 2e 0d 0b 00 20 20 20 20 |2.3bc.1)|.... |
|00001380| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001390| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000013a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 32 20 20 20 | | 2 |
|000013b0| 20 20 20 20 20 20 20 20 | 20 20 32 0d 0a 00 3c 00 | | 2...<.|
|000013c0| 00 00 f4 01 00 00 4d 2c | 00 00 10 00 00 00 00 00 |......M,|........|
|000013d0| 00 00 63 68 61 70 38 00 | 49 02 00 00 3a 01 00 00 |..chap8.|I...:...|
|000013e0| 4d 19 00 00 30 02 00 00 | 00 00 00 00 73 38 2d 31 |M...0...|....s8-1|
|000013f0| 00 9c 03 00 00 df 02 00 | 00 4d 19 00 00 83 03 00 |........|.M......|
|00001400| 00 00 00 00 00 73 38 2d | 31 2d 31 00 94 06 00 00 |.....s8-|1-1.....|
|00001410| e6 01 00 00 4d 19 00 00 | 7b 06 00 00 00 00 00 00 |....M...|{.......|
|00001420| 73 38 2d 31 2d 32 00 93 | 08 00 00 73 08 00 00 4d |s8-1-2..|...s...M|
|00001430| 19 00 00 7a 08 00 00 00 | 00 00 00 73 38 2d 31 2d |...z....|...s8-1-|
|00001440| 33 00 1f 11 00 00 9f 02 | 00 00 4d 19 00 00 06 11 |3.......|..M.....|
|00001450| 00 00 00 00 00 00 73 38 | 2d 31 2d 34 00 |......s8|-1-4. |
+--------+-------------------------+-------------------------+--------+--------+